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Abstract

Fan noise is one of the principal noise sources in turbofan aero-engines. At supersonic fan speeds, fan tones are

generated by the ‘‘rotor-alone’’ pressure field. In general, these tones can be well absorbed by an inlet duct acoustic liner,

except at high supersonic fan speeds when the rotor-alone pressure field is well cut-on. In this article an axially segmented

liner is proposed, which is predicted to improve the attenuation of tones at high supersonic fan speeds. The analysis is

based on locally reacting cavity liners. The axially segmented liner is axisymmetric and consists of two circular sections of

different linings joined together. The optimum design consists of two linings with the same face-sheet resistance, but with

different cavity depths. The depth of the liner adjacent to the fan is very thin. This means that where the two liners are

joined there is a wall impedance discontinuity that can cause acoustic scattering. Fan tones can be modelled in terms of

spinning modes in a uniform circular-section duct. The liner is axisymmetric, so modal scattering will be only between

different radial modes. The optimum design minimizes the acoustic energy scattered into the first radial mode. This

improves the attenuation of fan tones at high supersonic fan speeds, because acoustic energy is scattered into high radial

mode orders, which are better absorbed by the lining.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The sound that propagates in an aircraft turbofan inlet duct is almost entirely due to the fan. Fan tone noise
is highly dependent on the engine power, or fan speed. At subsonic fan speeds, the ‘‘rotor-alone’’ pressure field
attached to the ducted fan is cut-off. The dominant fan tones are harmonics of the blade passing frequency
(BPF), which are generated by rotor–stator interactions, and other similar mechanisms such as interaction
with mean-flow distortion and scattering by liner discontinuities.

On a typical modern high bypass ratio turbofan engine the fan tip speed will be supersonic at high engine
powers, for example at the engine ‘‘cutback’’ and ‘‘sideline’’ operating conditions (nominally about 80–85 and
90–95% fan speed). At supersonic fan speeds, the rotor-alone pressure field is not cut-off. Fan tones which are
harmonics of the engine shaft rotation frequency, or engine orders (EO), are generated by the rotor-alone
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

A modal amplitude (Pa)
b duct radius (m)
B number of fan blades
BPF blade passing frequency (Hz)
c speed of sound ðms�1Þ
d distance between fan plane and liner (m)
EO engine order
f frequency (Hz)
F engine shaft rotation frequency (Hz)
h liner depth (m)
Ix axial intensity ðWm�2Þ
Imf g denotes imaginary part
Jm Bessel function of the first kind, order m

k acoustic wavenumber ðradm�1Þ
kb Helmholtz number (non-dimensional fre-

quency)
kx axial wavenumber ðradm�1Þ
l liner length (m)
L duct length (m)
maxf g denotes maximum value
ðm; nÞ (azimuthal, radial) mode order
Mx axial Mach number
N number of radial modes used in mode-

matching
nc highest cut-on radial mode order (m and

o fixed)
p pressure (Pa)
PWL sound power level (dB)
r radial coordinate (m)
rev/min revolutions per minute
R resistance (non-dimensional)
Ref g denotes real part
SPL sound pressure level (dB)
t time (s)
U axial mean flow ðms�1Þ
W sound power (W)
x axial distance upstream of the fan (m)
X c cavity reactance (non-dimensional)
Z specific acoustic impedance (non-dimen-

sional)

Greek letters

ax axial wavenumber, lined duct section II
ðradm�1Þ

bx axial wavenumber, lined duct section III
ðradm�1Þ

DLAM least attenuated mode transmission loss
(dB)

DPWL sound power transmission loss (dB)
z cut-off ratio
Z radial wavenumber, lined duct section III

ðradm�1Þ
y azimuthal coordinate (rad)
yx mode angle (rad)
k radial wavenumber ðradm�1Þ
l acoustic wavelength (m)
m radial wavenumber, lined duct section II

ðradm�1Þ
r density ðkgm�3Þ
o angular frequency 2pf ðrad s�1Þ

Subscripts

1 denotes first lined segment (duct section
II)

2 denotes second lined segment (duct sec-
tion III)

m; n mode ðm; nÞ
0 mean value

Superscripts

0 denotes an acoustic quantity
^ denotes a harmonic quantity
þ denotes a right-running mode
� denotes a left-running mode
I rigid duct section, adjacent to the fan

plane
II first lined duct segment
III second lined duct segment
IV rigid duct section, adjacent to the exit

plane
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pressure field. The name ‘‘buzz-saw’’ noise or multiple pure tones is generally used to describe this component
of fan noise. At source, i.e. close to the fan, the BPF harmonics are the dominant tones in the EO spectrum,
although the principal source generation mechanisms at subsonic and supersonic fan speeds are in fact
different.

Turbofan inlet ducts are lined with a sound absorbent acoustic lining to reduce noise emissions. The type of
acoustic liners are typically locally reacting cavity linings. The specific acoustic impedance of these type of
liners depends on the properties of the lining, the mean flow and the frequency of the sound. In general, it is
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more difficult to attenuate the fan tones as the engine power is increased, notably at high supersonic fan
speeds. (The reasons for this are outlined in Section 2.)

A potential method to improve the attenuation at high supersonic fan speeds is to try to alter the sound
field. In this article a non-uniform ‘‘axially segmented’’ liner is proposed. The liner is a two-section segmented
liner, which is axisymmetric. It consists of two circular sections of different linings joined together. The aim is
to introduce a wall impedance discontinuity that causes additional acoustic scattering, which may increase the
sound attenuation.

Modelling transmission and radiation of sound in ducts is reviewed by Eversman [1]. Most inlets are nearly
circular, and are smoothly contoured so that the aerodynamic flow is stable, and total pressure losses are
small. At the typical BPF, the acoustic wavelength is of the order of one-tenth of the inlet duct diameter, so
changes in the inlet’s diameter, and also the mean flow, are generally assumed to be small, at least over an
acoustic wavelength. Also, in Ref. [2] it is shown that solutions of sound transmission in a duct with a thin
shear layer at the wall, and sound transmission with a uniform flow and continuity of particle displacement
applied at the wall, converge in the limit as the shear layer thickness tends to zero. Therefore, to a first
approximation, here an inlet is modelled as a uniform circular-section duct containing a uniform mean-flow.
This permits the sound field to be represented in terms of ‘‘spinning’’ modes, which can be expressed in terms
of known analytic functions [3].

Recently, there has been renewed interest in modelling, using analytic methods, sound transmission in
slowly-varying ducts [4]. However, computational techniques, such as the finite element method, are generally
required to examine more complex non-uniform duct geometries and mean flows [5]. In this article, a uniform
circular-section duct and uniform flow is assumed, in order that all the analysis may be carried out in terms of
spinning modes.

The concept of non-uniform liners has been studied in the past. In the 1970s and early 1980s there was
interest in the use of multi-section axisymmetric lined ducts to suppress inlet noise.1 Refs. [7–10] are examples
of the work at this time. Lansing and Zorumski [7] appears to be the first published work on the type of axially
segmented liner which is examined in this current article. Unruh [8] first examined how the liner’s length, as
well as its impedance, may be tuned to optimize the attenuation. Also, both Baumeister [9] and Tsai [10]
realized that the first segment of lining acts as a scatterer, which facilitates the attenuation of the sound in
adjacent lined segments. However, Ref. [9] concluded that ‘the use of optimized axially segmented liners fails
to offer sufficient advantage over a uniform liner to warrant their use except in low-frequency, single-mode
application’.

In this article a simple design of an axially segmented liner is proposed, which is predicted to increase
significantly, compared to a typical uniform liner design, the attenuation of the BPF tone at high supersonic
fan speeds. This is not a low-frequency application, but owing to the nature of the source, it may be viewed as
a type of single-mode application. The type of axially segmented liner proposed in this article is the subject of
European Patent No. EP1411225 [11].
2. Scattering by an axially segmented liner

The inlet duct geometry used here is shown sketched in Fig. 1. Take cylindrical polar co-ordinates ðr; y;xÞ
such that the centre of the duct is aligned with the x-axis, the fan plane is at x ¼ 0, the exit plane is at x ¼ L,
and the duct wall is at r ¼ b. The duct is lined from x ¼ d to d þ l. The flow is assumed uniform across the
duct cross-section, and has axial Mach number Mx ¼ U0=c0.

The sound field in a waveguide or duct is commonly expressed in terms of modes. Assume that for a
harmonic noise source, with frequency o, the harmonic pressure field p0ðr; y;x; tÞ ¼ p̂ðr; y;xÞ expðiotÞ satisfies
the convected Helmholtz equation

ik þMx
q
qx

� �2

p̂ ¼ r2p̂; k ¼ o=c0. (1)
1Also, at this time there was work on peripherally varying liners which is discussed in more detail in Ref. [6].
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Fig. 1. Inlet duct geometry.
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It is well known, (e.g. as shown by Eversman [1]), that on separating the variables r, y and x modal solutions of
Eq. (1) can be expressed as

p̂ðr; y;xÞ ¼
X1

m¼�1

X1
n¼1

ðp̂þm;n þ p̂�m;nÞ

¼
X1

m¼�1

X1
n¼1

ðAþm;nJmðkþm;nrÞeiðmy�kþx m;nxÞ þ A�m;nJmðk�m;nrÞeiðmy�k�x m;nxÞÞ, ð2Þ

where

kx
�
m;n ¼

k

1�M2
x

�Mx �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1�M2

xÞ
k�m;n

k

� �2
s0

@
1
A. (3)

Each mode is identified by its azimuthal and radial order, m and n, denoted by subscript m; n. Note that þ;�
denote right- and left-running modes respectively.

In a rigid-walled duct, at a fixed frequency, only a finite number of modes can propagate inside the duct and
transmit acoustic power. All the remaining modes will be ‘‘cut-off’’ and transmit no acoustic power. The cut-
off ratio zm;n is defined as

zm;n ¼
kb

km;nb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

x

q . (4)

Mode ðm; nÞ propagates inside the duct, or is ‘‘cut-on’’, if zm;n41 (in which case the axial decay rate Imfkxm;ng

is zero), otherwise it is cut-off. For each azimuthal mode order m, the radial modes are ordered in terms of
decreasing cut-off ratio, i.e. zm;14zm;24zm;3 . . . , which is equivalent to ordering the modes in terms of
increasing Refkm;ng. Radial mode orders with n4nc are all cut-off.

Geometric acoustics can be used to model sound propagation in a duct, in terms of rays being reflected
between the duct walls. For example, in a two-dimensional duct with parallel walls, the duct modes
can be expressed exactly as the superposition of two plane waves.2 The angle between the component waves
2In a circular duct the ray structure of the duct modes is described in Ref. [12].
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of the mode and the duct axis is known as the axial mode angle yx. The cut-off ratio z and mode angle
yx are linked. For example, without flow it is straightforward to show that sin yx ¼ 1=z.3 Modes near
cut-off (z � 1) have mode angles close to 90�, whereas modes that are well cut-on have smaller mode
angles.

In an acoustically lined duct, all the modes have complex radial and axial wavenumbers. There is no unique
method to order the modes because all the radial wavenumbers are complex. However, it is still logical to
order the radial modes the same as in a rigid duct. It will be useful to extend the normal use of the terms ‘‘cut-
on’’ and ‘‘cut-off’’ also to describe modes in a lined duct. Modes which are cut-off (zo1), or near cut-off
(z � 1), will have large axial decay rates in a lined duct. Conversely, propagating modes which are well cut-on
will have small axial decay rates.

The mode angle concept is useful to illustrate the different attenuation rates in a lined duct.4 The component
waves of modes near cut-off (with mode angles close to 90�) are reflected a large number of times per unit
length as they propagate in the duct, whilst the component waves of well cut-on modes are reflected fewer
times per unit length. The attenuation per unit length will depend on the number of reflections, as well as the
frequency of the sound, and the properties of the acoustic lining, so modes near cut-off are generally well
absorbed in a lined duct.

Tones and broadband noise can be modelled by modes. In terms of modes, a tone is usually represented by a
small number of modes which are linked: for example, modes with the same azimuthal mode order.
Broadband noise is usually modelled by a multi-mode source with equal energy per mode.

At subsonic fan speeds, Tyler and Sofrin [3] have shown that the BPF tone, owing to rotor–stator
interactions, will be comprised of a combination of spinning modes with different azimuthal and radial mode
orders. The azimuthal mode orders depend on the number of fan rotor blades and stator vanes.

At supersonic fan speeds, the rotor-alone pressure field is steady in the rotor’s frame of reference, and
consists of modes spinning with the same circumferential phase speed as the fan, which equals 2pF. The
circumferential phase speed of a spinning mode is o=m. Therefore, a rotor-alone tone with frequency m�F
can be modelled by spinning modes with azimuthal mode order m.5 The rotating fan’s circumferential phase
speed will be supersonic only over a small spanwise section of the blade, close to the blades’ tips. It follows that
at the fan plane most of the acoustic energy will be contained in modes with radial mode order n ¼ 1. This
means that the fan tonal noise source can be modelled, at frequency mF, by the rotor-alone mode ðm; 1Þ. In
this article, it is assumed that the BPF tone can be modelled by a single mode, namely the rotor-alone BPF
mode ðB; 1Þ.

At low supersonic fan speeds, e.g. cut-back, the rotor-alone pressure field is near cut-off. The compo-
nent waves of the modes will be reflected a large number of times between the duct walls. However,
at high supersonic fan speeds, e.g. sideline, the rotor-alone field is well cut-on. It is more difficult to
attenuate the rotor-alone modes, as the waves will be only reflected a small number of times between the
duct walls.

Rice [14] found that a thin cavity lining better damps well cut-on modes, but modes near cut-off are better
damped by a thicker lining. An axially segmented liner can make use of linings of different depths. Also, at
supersonic fan speeds, each EO tone can be modelled as a single mode. Therefore, following Baumeister [9], an
axially segmented liner should provide a benefit over a uniform liner for the high supersonic fan speed
application.

The axially segmented liner is axisymmetric. This is crucial to ensure that for each azimuthal mode order,
any scattering is between only radial modes. The aim is to scatter energy into higher radial mode orders, i.e.
n41, which should increase the attenuation because higher-order modes are nearer cut-off.

In this article, in order to assess an axially segmented liner, the predicted sound power transmission loss, at
BPF, is used as a metric to optimize the liner’s design. The transmission loss is then compared with the
predicted attenuation for a uniform liner. The analysis is conducted by using the well known mode-matching
technique.
3Note that with flow an additional ‘mode angle’ which includes the convective effect of the mean flow also can be defined, see Ref. [13].
4Strictly the mode angles defined in Ref. [13] are based on a rigid circular duct.
5EO denotes the non-dimensional frequency of the mth harmonic, i.e. EO ¼ mF=F ¼ m.
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3. Mode-matching technique

In a duct, acoustic scattering can be caused by changes in the impedance of the duct wall. Fig. 2 illustrates
the mode-matching technique applied to both an axially segmented and a uniform liner. Details of similar
mode-matching schemes can be found in Refs. [15, Chapter 2] and also in Refs. [7,8].

The analysis is outlined for an axially segmented liner. For a uniform liner region II is omitted in the analysis.
The harmonic pressure field in the rigid and lined duct sections is expressed as a superposition of Fourier–Bessel
modes, consisting of right-running ðþÞ and left-running ð�Þ modes. For azimuthal mode order m,

p̂I
mðr; y;xÞ ¼

XN

n¼1

ðAIþ
m;nJmðkþm;nrÞe�ik

þ
x m;nx þ AI�

m;nJmðk�m;nrÞe�ik
�
x m;nxÞeimy, (5)

p̂II
mðr; y;xÞ ¼

XN

n¼1

ðAIIþ
m;nJmðmþm;nrÞe�ia

þ
x m;nx þ AII�

m;nJmðm�m;nrÞe�ia
�
x m;nxÞeimy, (6)

p̂III
m ðr; y;xÞ ¼

XN

n¼1

ðAIIIþ
m;n JmðZþm;nrÞe�ib

þ
x m;nx þ AIII�

m;n JmðZ�m;nrÞe�ib
�
x m;nxÞeimy, (7)

p̂IV
m ðr; y;xÞ ¼

XN

n¼1

ðAIVþ
m;n Jmðkþm;nrÞe�ik

þ
x m;nx þ AIV�

m;n Jmðk�m;nrÞe�ik
�
x m;nxÞeimy. (8)

Note that the radial and axial wavenumbers in the rigid duct sections (I, IV) are denoted by k and kx, and in the
lined duct sections (II, III) by m; Z and ax; bx, respectively. Also, in a rigid-walled duct kþm;n ¼ k�m;n. The
wavenumbers are calculated numerically by using the solution method described by Eversman [1, pp. 122–126].
A brief outline of the procedure used here to calculate modes in a lined duct is in Appendix C.

With uniform flow, Rienstra [16] has shown that up to four surface wave modes may be found. One of these
modes may in fact be unstable, similar to the classical Helmholtz instability. This instability mode is usually
omitted when using mode-matching. In all the simulations here the instability mode is not included in Eqs. (6)
or (7).

The series are truncated at n ¼ N. It is crucial that N4nc. Typically, in order to improve the accuracy of the
matching, more cut-off modes should be included, so that the near field in the vicinity of each matching plane
is accurately modelled. In practice if nc � 5, then N420 appears sufficient.

The axial acoustic particle velocity in each duct section can be also expressed as a superposition of
Fourier–Bessel modes, similar to Eqs. (5)–(8) but with different Am;n’s. By using the acoustic momentum
equation it is straightforward to show that

ûx
�
m;n ¼

x�m;np̂�m;n
r0c0

. (9)
x
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Fig. 2. Inlet duct geometry. Mode-matching technique.



ARTICLE IN PRESS
A. McAlpine et al. / Journal of Sound and Vibration 294 (2006) 780–806786
In a rigid duct

x�m;n ¼
kx
�
m;n

k � kx
�
m;nMx

. (10)

In the lined duct sections kxm;n in Eq. (10) is replaced by axm;n or bxm;n.
The modal amplitudes, AIþ

m;n, specify the noise source at the fan plane, x ¼ 0, which is assumed to be known.
It is also assumed that at the exit plane, x ¼ L, there is an anechoic termination, which means that AIV�

m;n ¼ 0,
n ¼ 1 to N. In order to evaluate the other modal amplitudes, the pressure and axial particle velocity are
matched at x ¼ d, d þ l1 and d þ l1 þ l2 ð¼ d þ lÞ.

The Galerkin method of weighted residuals is used for the matching. (This procedure is explained in Ref. [8,
p. 7].) For example, continuity of pressure and axial particle velocity at x ¼ d givesZ b

r¼0

rJmðkm;nrÞ p̂II
mðr; y; d

þ
Þ � p̂I

mðr; y; d
�
Þ

� �
dr ¼ 0; n ¼ 1 to N, (11)

Z b

r¼0

rJmðkm;nrÞ ûII
x mðr; y; d

þ
Þ � ûI

xmðr; y; d
�
Þ

� �
dr ¼ 0; n ¼ 1 to N. (12)

Similar expressions are formulated for the continuity of pressure and axial particle velocity at x ¼ d þ l1
and d þ l1 þ l2. This leads to 6N sets of equations which can be used to evaluate the 6N unknown coeffi-
cients. In order to solve the problem using an iterative scheme it is convenient to arrange the equations as
follows:

AIIþ
m;n

AI�
m;n

" #
¼ T1D1

AIþ
m;n

AII�
m;n

" #
, (13)

AIIIþ
m;n

AII�
m;n

" #
¼ T2D2

AIIþ
m;n

AIII�
m;n

" #
, (14)

AIVþ
m;n

AIII�
m;n

" #
¼ T3D3

AIIIþ
m;n

AIV�
m;n

" #
. (15)

T1, T2 and T3 are transfer matrices which relate the pressure and axial particle velocity between adjacent
sections of the duct. The coefficients T1

ij ;T
2
ij and T3

ij are all constant. Their values are listed in Appendix A. D1,
D2, D3 are diagonal matrices. The coefficients D1

ii;D
2
ii and D3

ii depend on the axial decay rates in each section of
the duct. Their values are listed in Appendix B. In Ref. [17], a simple iterative scheme which can be used to
solve Eqs. (13)–(15) is outlined.

In the rigid duct sections, the sound power is the sum of the power in all the cut-on modes. The power
in each mode can be summed because the mode shapes are orthogonal. The modal sound power W�

m;n is
given by

W�
m;n ¼ 2p

Z b

r¼0

Ix
�
m;nrdr, (16)

i.e. the integral of the modal acoustic intensity Ix
�
m;n in the �x-direction over the cross-sectional area of the

duct. The form of the axial acoustic intensity is given by Morfey [18, Eq. (16), p. 39]. This leads to

W�
m;n ¼ jA

�
m;nj

2w�m;n, (17)

where

w�m;n ¼
pb2

2r0c0
jJmðkm;nbÞj2 1�

m

km;nb

� �2
" #

½ð1þM2
xÞRefx�m;ng þMxð1þ jx

�
m;nj

2Þ�. (18)
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Table 2

Fan operating condition

Fan speed Mx Mt BPF kb zB;1

Sideline �0:50 1:29 1680Hz 31:0 1:36

Table 1

Inlet duct specification

Number of fan blades B 24

Duct radius b 1:0m
Duct length L 1:1m
Liner length l 0:8m
Rigid-walled section d 0:15m
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At the fan plane it is assumed that all the acoustic energy is contained in the first radial mode order.6 Thus,
here the sound power transmission loss, at BPF, is defined as

DPWL ¼ 10 log10
W Iþ

B;1Pnc

n¼1 W IVþ
B;n

. (19)

4. Results

The objective is to design a two-section axially segmented liner that is predicted to increase, compared with
a uniform liner, the sound power transmission loss DPWL of the rotor-alone BPF mode ðB; 1Þ at high
supersonic fan speeds.

The dimensions of the inlet duct and flow speed used here are realistic for a modern turbofan aero-engine.
The inlet duct geometry is listed in Table 1. The fan operating condition is listed in Table 2. The nominal high
engine power is referred to as the ‘‘sideline’’ fan speed. Note that at this fan speed, the cut-off ratio of the BPF
mode is zB;1 ¼ 1:36, and two radial modes are cut-on.

The acoustic liners are assumed to be locally reacting cavity linings. These consist of a porous facing-sheet
(with resistance R) and a rigid back plate, which sandwich a honeycomb separator with cavity depth h. The
non-dimensional specific acoustic impedance7 is given by

Z ¼ Rþ iX c ¼ R� i cotðkhÞ. (20)

A uniform liner is shown sketched in Fig. 2(b). It is straightforward to optimize a uniform liner. The
objective function is DPWL. The design variables are R and h. The maximum and minimum permitted values of
R and h are prescribed. Then, the design space ðR; hÞ is searched to locate maxfDPWLg.

A two-section axially segmented liner is shown sketched in Fig. 2(a). The two lined segments have lengths l1
and l2, and specific acoustic impedances Z1 and Z2. Note that subscript 1 denotes the first lined segment, and
subscript 2 denotes the second lined segment. In this case the objective function DPWL will depend on five
design variables. These are the face-sheet resistance and cavity depth of each liner, R1; h1 and R2; h2, and the
length l1. The total length of the liner l is fixed, i.e. l1 þ l2 ¼ l. In this case the design space ðR1; h1;R2; h2; l1Þ is
searched to locate maxfDPWLg.
6In this article all the mode-matching calculations are for a single right-running mode at x ¼ 0. It is straightforward to include more

than one incident mode, but the results will then depend on the phasing of the multiple incident modes.
7In order to simplify the liner optimization the mass reactance is assumed to be zero. Also, the acoustic impedance has been non-

dimensionalized by dividing by r0c0, (c0 ¼ 340m s�1 and r0 ¼ 1:2 kgm�3).
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4.1. Uniform liner

Fig. 3(a) shows DPWL contours plotted in the ðR; hÞ-plane. R varies between 0:5 and 10, and h varies between
1 and 100mm. There is a local maximum point at R ¼ 6:5, h ¼ 20mm.

However, in practice a lining with a resistance as high as 6:5 is unlikely to be used. A lower resistance would
be more effective at lower fan speeds, and to absorb broadband noise. Fig. 3(b) shows how DPWL varies with h

when R ¼ 3. This is a more realistic value of the resistance. Cavity depths, ranging from about 5 to 60mm, are
predicted to attenuate the BPF tone by a similar amount, with maxfDPWLg about 14 dB.

4.2. Axial liner

The design space is constrained, so that only realistic values for a turbofan inlet liner are included. In this
case R1;R2 vary between 1 and 3, and h1; h2 vary between 0 and 50mm. The length l1 can vary from 0 to
l ð¼ 0:8mÞ; l1 ¼ 0 and l1 ¼ l are both special cases that correspond to uniform liner designs. With five design
variables it is still possible to generate contour plots which illustrate where maximum points are located in the
ðR1; h1;R2; h2; l1Þ-space.
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Fig. 3. Predicted sound power transmission loss at blade passing frequency for the uniform liner: (a) Resistance R ¼ 0:5210, and liner

depth h ¼ 02100mm. Contour lines are DPWL (in dB). (b) R ¼ 3 (fixed), and h ¼ 02100mm.
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An example of the axially segmented liner optimization results is shown in Fig. 4. The figure contains nine
subplots. Each subplot shows DPWL contours plotted in the ðh1; h2Þ-plane, with R1, R2 and l1 fixed. The
horizontal axis (h1) and vertical axis (h2) vary from 0 to 50mm. The values of the face-sheet resistances R1 and
R2 can be read from the main axes. The value of l1 is fixed. In this example the ratio l1=l ¼ 0:3. Similar figures
were obtained for different ratios of l1=l between 0 and 1, but the highest values of DPWL were found when l1=l

is close to 0:3.
In Fig. 4 in each subplot there are two local maximum points. In general, the largest values of DPWL are

found with the maximum prescribed values of the resistance. In Fig. 5 there is an enlarged version of the
contour subplot with R1 ¼ R2 ¼ 3. In this case the local maximum points are located at h1 ¼ 3mm; h2 ¼ 7mm
and h1 ¼ 5mm; h2 ¼ 35mm. The first point is not considered here because both liner segments are thin. A
thicker liner would be more effective at lower fan speeds, and to absorb broadband noise. However, the
second point could provide a practical design, because it combines a thin lined segment with a thicker lined
segment. In fact, the thicker liner of depth 35mm is a more typical thickness of the type of cavity linings used
in inlet ducts. Also, in Fig. 3(b) it can be seen that if R ¼ 3, then a uniform liner of depth h ¼ 35mm is close to
the optimum uniform lining.

The importance of length l1 is seen in Fig. 6, which shows how DPWL varies with l1, when R1 ¼ 3,
h1 ¼ 5mm, and R2 ¼ 3, h2 ¼ 35mm. The choice of length l1 is crucial. In this example, max DPWLf g is
predicted when l1 ¼ 0:23m, which is very close to l1=l ¼ 0:3.

When the values of the face-sheet resistance are constrained to be R � 3, the optimum axially segmented
liner design is R1 ¼ 3; h1 ¼ 5mm;R2 ¼ 3; h2 ¼ 35mm and l1 ¼ 0:23m. In this case, maxfDPWLg ¼ 38:1 dB. As
a more advanced optimization method is not used, the optimum design may not in fact be the global optimum.
A preliminary attempt at using more advanced optimization methods for this type of problem is in Ref. [19].
For a uniform liner, with R ¼ 3 and h ¼ 35mm, i.e. the same lining as the second segment of the axially
segmented liner, DPWL ¼ 13:1 dB. A three-fold increase in the sound power transmission loss at BPF is
predicted with the axially segmented liner, compared with a typical uniform liner of the same length. These
proposed designs are shown sketched in Fig. 7.
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Table 3

Predicted sound power transmission loss at blade passing frequency

Sideline fan speed DPWL DPWL

Flow condition—duct liner Mode-matching (dB) Finite element method (dB)

No flow—uniform liner 26.6 26.6

No flow—‘axial’ liner 20.4 20.4

Uniform flow—uniform liner 13.1 13.4

Uniform flow—‘axial’ liner 38.1 39.9
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4.3. Validation of mode matching by the finite element method

To assess the accuracy of the mode-matching technique, the acoustic field in the duct was simulated also by
using ACTRAN/AE, a finite/infinite element code produced by Free Field Technologies.8 Details of the
method are given in Ref. [6]. A particular feature of ACTRAN/AE which makes it suitable for this type of
duct acoustics problem is that the boundary conditions can be specified in terms of modes.

Simulations have been conducted for the axially segmented and uniform liner designs, with and without
mean flow. The results are in Table 3, and shown in Figs. 8–11. It is seen that without flow the agreement
between mode-matching and the finite element method is excellent; see the predicted values of DPWL in Table 3,
and also examples of the predicted radial and wall acoustic pressure amplitudes plotted in Figs. 8 and 10. Note
that without flow the predicted attenuation with the axially segmented liner is less than with the uniform liner.
This is because without flow, mode ðB; 2Þ is in fact cut-off. Comparison of the results without flow is included
to demonstrate the accuracy of the mode-matching.

The inclusion of a uniform mean-flow affects slightly the accuracy of the comparison between mode-
matching and the finite element method. The predicted values of DPWL listed in Table 3 are not in exact
agreement, although the comparison is still good. Fig. 9 shows examples of the radial pressure at each
matching station. In general, there is close agreement between the two methods, apart from in Fig. 9(c). It is
noted that with the axially segmented liner, DPWL is nearly 40 dB, which means the acoustic pressure amplitude
at the exit plane is only 1% of the pressure at the fan plane. Therefore, it is not surprising that the agreement
between the two methods, seen in Fig. 9(c) at x ¼ d þ l, appears to be poor, because each plot of the radial
pressure field has been normalized. In absolute terms, the pressure at x ¼ d þ l (Fig. 9(c)) is about 1% of that
at x ¼ d (Fig. 9(a)).
8Free Field Technologies S.A., 16 place de l’Université, B-1348 Louvain-la-Neuve, Belgium. http://www.fft.be info@fft.be

http://www.fft.beinfo@fft.be
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Fig. 8. Prediction of the radial acoustic pressure amplitude with no flow. Axially segmented liner: (a) x ¼ d; (b) x ¼ d þ l1;

(c) x ¼ d þ l1 þ l2 ð¼ d þ lÞ. Uniform liner: (d) x ¼ d; (e) x ¼ d þ l. Key: �, mode-matching; —, finite element method.
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Fig. 11 shows examples of the wall pressure. The agreement between the two methods is good, apart from at
the matching stations. With a uniform flow, the finite element method predicts large wall pressure fluctuations
which are localized at the matching stations. Koch and Möhring [20] examine a similar problem (finite length
liner in a rectangle flow duct) using the Wiener–Hopf technique. They show that the solution is not unique. It
depends on edge conditions applied at the liner’s leading and trailing edge. In the Wiener–Hopf formulation,
the jump in particle displacement at the edges of the liner is explicitly included in the solution. (Particle
displacement at a rigid wall is zero, at an impedance wall it is non-zero.) Koch and Möhring demonstrate that
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Fig. 9. Prediction of the radial acoustic pressure amplitude with uniform flow. Axially segmented liner: (a) x ¼ d; (b) x ¼ d þ l1;

(c) x ¼ d þ l1 þ l2 ð¼ d þ lÞ. Uniform liner: (d) x ¼ d; (e) x ¼ d þ l. Key: �, mode-matching; —, finite element method.
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the mode-matching technique corresponds to a Wiener–Hopf formulation with finite particle displacement
jumps at the liner’s leading and trailing edge. In this case, the pressure will be finite at the edges. One
alternative Wiener–Hopf solution leads to a Kutta condition being satisfied at the leading edge, with singular
behaviour at the trailing edge. (The use of a Kutta condition is linked to the instability mode.)

Although different edge conditions alter the Wiener–Hopf solution, Koch and Möhring found that the
transmission coefficient was similar in each case. The different edge conditions mainly alter the value of the
reflection coefficient. This is consistent with the comparison here between mode-matching and the finite
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Fig. 10. Prediction of the acoustic pressure amplitude at the duct wall with no flow: (a) axially segmented liner; (b) uniform liner. Key:
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Fig. 11. Prediction of the acoustic pressure amplitude at the duct wall with uniform flow: (a) axially segmented liner; (b) uniform liner.
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element method. The two methods predict similar sound power transmission losses, although the finite
element results indicate the pressure at the duct wall may be singular at the matching stations. With the mode-
matching procedure used here, although the boundary condition is discontinuous at the matching stations, the
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Table 4

Radial wavenumbers (blade passing frequency)

Mode km;nb mþm;nb Zþm;nb

ðB; 1Þ 26:36þ 0:00i 22:42þ 5:09i 29:87þ 1:15i
ðB; 2Þ 32:11þ 0:00i 31:34þ 0:32i 33:94þ 2:28i
ðB; 3Þ 36:53þ 0:00i 36:20þ 0:21i 36:79þ 1:25i
ðB; 4Þ 40:56þ 0:00i 40:36þ 0:26i 40:95þ 0:74i
ðB; 5Þ 44:37þ 0:00i 44:25þ 0:26i 44:79þ 0:55i

k, rigid duct; m, lined duct Z ¼ Z1 ¼ 3� 6:4i (impedance of axially segmented liner—segment 1); Z, lined duct Z ¼ Z2 ¼ 3� 0:5i
(impedance of uniform liner, and axially segmented liner—segment 2).

Table 5

Axial wavenumbers (blade passing frequency)

Mode kx
þ
m;nb ax

þ
m;nb bx

þ
m;nb

ðB; 1Þ 48:76� 0:00i 53:85� 4:59i 43:72� 1:99i
ðB; 2Þ 39:11� 0:00i 40:80� 0:66i 35:89� 6:78i
ðB; 3Þ 20:70� 8:13i 22:37� 6:04i 26:28� 10:96i
ðB; 4Þ 20:70� 21:91i 21:35� 21:43i 22:45� 22:90i
ðB; 5Þ 20:70� 30:19i 21:21� 29:95i 21:76� 31:02i

kx, rigid duct; ax, lined duct Z ¼ Z1 ¼ 3� 6:4i (impedance of axially segmented liner—segment 1); bx, lined duct Z ¼ Z2 ¼ 3� 0:5i
(impedance of uniform liner, and axially segmented liner—segment 2).
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pressure difference at each matching is minimized using the Galerkin method of weighted residuals. Thus, the
type of large wall pressure fluctuations predicted using the finite element method are not predicted using this
mode-matching formulation. In a forthcoming paper, Astley and Hii, using an alternative mode-matching
formulation will demonstrate that the inclusion of additional terms in the matching (which account for the
edge conditions with flow) leads to better agreement between mode matching and the finite element method.
5. Discussion

In this section the reasons for the prediction of a three-fold increase in the sound power transmission loss at
BPF with the axially segmented liner compared with a typical uniform liner are outlined. Then, a detailed
analysis of the results is in the following section, which uses an approximate mode-matching analysis to
illustrate the key points in this discussion.

The axially segmented liner consists of a short length (l1 ¼ 0:23m) of a thin cavity lining with resistance
R1 ¼ 3:0, cavity depth h1 ¼ 5mm) Z1 ¼ 3� 6:4i. This is joined to a thicker cavity lining with resistance
R2 ¼ 3:0, cavity depth h1 ¼ 35mm) Z2 ¼ 3� 0:5i. (The values of the specific acoustic impedance are at
BPF.) The first five radial modes, associated with each type of duct section, are listed in Tables 4 and 5, and
plotted in Figs. 12–14. In the rigid duct the first two radial mode orders are cut-on.9

With the thin lining (Z ¼ Z1), the radial wavenumber mB;1 has a relatively large imaginary part compared
with the higher mode orders. Rienstra [16] has shown that a mode which has a radial wavenumber with a large
imaginary part will decay exponentially with distance away from the duct wall. This type of mode is known as
a surface wave, because most of the acoustic energy is concentrated at the duct wall. This type of mode also
9Compare the axial decay rates of the cut-off modes in the rigid duct with the decay rates of these modes in the lined ducts. Modes

ðB; 3Þ; ðB; 4Þ and ðB; 5Þ have similar decay rates in each duct section. This justifies the use of the term cut-off to refer to modes in both the

rigid and lined duct sections.
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Fig. 13. Lined duct mode shapes. Specific acoustic impedance Z ¼ Z1 ¼ 3� 6:4i. (Impedance of axially segmented liner—segment 1.)
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Fig. 12. Rigid duct mode shapes.
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tends to decay rapidly in the axial direction. With Z ¼ Z1, mode ðB; 1Þ resembles a surface wave; mode ðB; 2Þ is
the least attenuated mode in this case.

With the thick lining (Z ¼ Z2) none of the modes resemble a surface wave. In this case, mode ðB; 1Þ is the
least attenuated mode. Also, this mode has a higher axial decay rate, compared with the least attenuated mode
with the thin lining, i.e. Imfbx

þ
B;1g4Imfax

þ
B;2g, because this lining is thicker.
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Fig. 14. Lined duct mode shapes. Specific acoustic impedance Z ¼ Z2 ¼ 3� 0:5i. (Impedance of uniform liner, and axially segmented

liner—segment 2.)
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In order to assess the axially segmented liner, it is convenient to assume that the sound power transmission
loss can be expressed, approximately, as

DPWL � DPWL1
þ DPWL2

, (21)

where DPWL1
and DPWL2

are estimates of the transmission loss due to the first and second lined duct sections,
respectively.

Estimates of DPWL1
and DPWL2

could be determined based on the attenuation of the least attenuated modes.
This would neglect the other modes, and the effect of any scattering. These estimates are given by

DLAM1
¼ �20 Imfax

þ
B;2gl1log10 e, (22)

DLAM2
¼ �20 Imfbx

þ
B;1gl2 log10 e. (23)

Note that in practice Eqs. (22) and (23) are normally applied when the lengths l1; l2 are sufficiently long, so
that the energy transmitted by the other modes is negligible. In fact, the predicted transmission loss with the
axially segmented liner significantly exceeds the estimate given by DLAM1

þ DLAM2
. Now estimates of the

transmission losses, DPWL1
and DPWL2

, due to each of the lined duct sections, are quantified separately.
Consider the first lined segment. Compare the mode shapes (shown plotted in Figs. 12 and 13) for the rigid

duct, and the lined duct with impedance Z1. The mode shapes are similar. Therefore, it would be anticipated
that transmission of the rigid duct mode ðB; 1Þ, at x ¼ d, should scatter a significant proportion of the acoustic
energy into the lined duct mode ðB; 1Þ. Mode ðB; 1Þ is not the least attenuated mode when Z ¼ Z1, so the
transmission loss DPWL1

will exceed DLAM1
.

Now consider the second lined segment. Compare the mode shapes (shown plotted in Figs. 13 and 14) for
the two lined ducts with impedances Z1 and Z2. The modes shapes are less similar, notably the cut-on modes
(n ¼ 1; 2). Therefore, in general, it would be anticipated that the transmission of the modes, at x ¼ d þ l1,
should scatter a proportion of the acoustic energy into the lined duct mode ðB; 1Þ in the second lined segment.
In which case, because mode ðB; 1Þ is the least attenuated mode when Z ¼ Z2, the transmission loss DPWL2

may
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be close to DLAM2
. However, in this case the first lined segment is also utilized as a scatterer.10 The length l1 is

optimized, so that the acoustic energy scattered at x ¼ d þ l1 into mode ðB; 1Þ is minimized. Then it follows
that the transmission loss DPWL2

will exceed DLAM2
.

In summary, with the axially segmented liner, the transmission losses due to each lined duct section exceed
the losses given by the axial decay rates of the least attenuated modes, i.e. DPWL1

4DLAM1
and DPWL2

4DLAM2
.

The combined effect leads to a three-fold increase in the overall sound power transmission loss at BPF
compared with a typical uniform liner.

6. Analysis of results

In order to examine different types of axially segmented and uniform liners, an approximate mode-matching
analysis is used. Simple estimates of the sound power transmission loss can be derived, to a first
approximation, by neglecting: (1) cut-off modes; (2) left-running (reflected) modes in the lined duct sections.
The use of (2) is based on the assumption that only the reflection at the liner’s leading edge is significant. (This
controls the reflected sound power.) At the end of each lined duct section, because the transmitted modes have
been attenuated, the acoustic energy in the reflected modes is assumed to be small, and is omitted in the
following analysis.

In the problem examined in this article only two radial modes are cut-on. It follows that the sound power
transmission loss, Eq. (19), reduces to

DPWL ¼ 10 log10
jAIþ

B;1j
2wþB;1 þ jA

Iþ
B;2j

2wþB;2
jAIVþ

B;1 j
2wþB;1 þ jA

IVþ
B;2 j

2wþB;2

 !
. (24)

Using assumptions (1) and (2), the mode-matching scheme given by Eqs. (13)–(15) reduces to:
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21 T3

22

 !
e�ibx

þ

B;1
l2 0

0 e�ibx
þ

B;2
l2

 !
AIIIþ

B;1

AIIIþ
B;2

" #
, (25)

AIIIþ
B;1

AIIIþ
B;2

" #
�

T2
11 T2

12

T2
21 T2

22

 !
e�iax

þ

B;1
l1 0

0 e�iax
þ

B;2
l1

 !
AIIþ

B;1

AIIþ
B;2

" #
, (26)

AIIþ
B;1

AIIþ
B;2

" #
�

T1
11 T1

12

T1
21 T1

22

 !
e�ikx

þ

B;1
d 0

0 e�ikx
þ

B;2
d

 !
AIþ

B;1

AIþ
B;2

" #
. (27)

Also, in this analysis it is assumed that

AIþ
B;1

AIþ
B;2

" #
¼

1

0

� �
. (28)

Combining Eqs. (26)–(28) gives

AIIþ
B;1 � T1

11e
�ikx

þ

m;1
d , (29)

AIIþ
B;2 � T1

21e
�ikx

þ

m;1
d , (30)

AIIIþ
B;1 � T2

11T1
11e
�iax

þ

m;1
l1e�ikx

þ

m;1
d
þ T2

12T1
21e
�iax

þ

m;2
l1e�ikx

þ

m;1
d , (31)

AIIIþ
B;2 � T2

21T1
11e
�iax

þ

m;1
l1e�ikx

þ

m;1
d
þ T2

22T1
21e
�iax

þ

m;2
l1e�ikx

þ

m;1
d . (32)

Also, combining Eqs. (25), (31), (32) leads to expressions for AIVþ
B;1 and AIVþ

B;2 .
10In addition to absorbing some of the acoustic energy.
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Eq. (25) also can be used to formulate simple estimates for DPWL, based on setting AIIIþ
B;2 ¼ 0 or AIIIþ

B;1 ¼ 0:

AIIIþ
B;2 ¼ 0! DPWL n¼1 � �20 Imfbx

þ
B;1gl2 log10 e� 20 log10jA

IIIþ
B;1 j þ C1, (33)

AIIIþ
B;1 ¼ 0! DPWL n¼2 � �20 Imfbx

þ
B;2gl2 log10 e� 20 log10jA

IIIþ
B;2 j þ C2, (34)

where

C1 ¼ 10 log10 w
þ
B;1 � 10 log10ðjT

3
11j

2wþB;1 þ jT
3
21j

2wþB;2Þ, (35)

C2 ¼ 10 log10w
þ
B;1 � 10 log10ðjT

3
12j

2wþB;1 þ jT
3
22j

2wþB;2Þ. (36)

Eqs. (33) and (34) are estimates of DPWL, if all the acoustic energy is scattered into mode ðB; 1Þ or mode ðB; 2Þ
in the second lined duct section (III). This means AIIIþ

B;2 ¼ 0 or AIIIþ
B;1 ¼ 0, respectively. For l2b1, then one of

Eqs. (33) or (34) should be a good estimate of DPWL. This depends whether ðB; 1Þ or ðB; 2Þ is the least
attenuated mode.

Note that for a uniform liner, lined duct section II is omitted in the analysis. In this case

AIIIþ
B;2 ¼ 0! DPWL n¼1 � �20 Imfbx

þ
B;1gl log10 e� 20 log10jA

IIIþ
B;1 j þ C1, (37)

AIIIþ
B;1 ¼ 0! DPWL n¼2 � �20 Imfbx

þ
B;2gl log10 e� 20 log10jA

IIIþ
B;2 j þ C2. (38)

Note: for a uniform liner AIIIþ
B;1 and AIIIþ

B;2 are the same as AIIþ
B;1 and AIIþ

B;2 for an axial liner, given by Eqs. (29),
and (30).

This approximate mode-matching analysis provides different estimates of the sound power transmission
loss, if all the acoustic energy is scattered into a single mode (in the lined duct section III). Eqs. (33) and (34)
apply to an axially segmented liner, and Eqs. (37) and (38) apply to a uniform liner. These estimates are now
compared against results from the full mode-matching technique. First, the two different acoustic impedances
(Z1 and Z2) are considered individually, in order to determine the transmission loss in a uniformly lined duct
when each type of lining is used separately. Then, several different configurations of a two-section axially
segmented lined duct are considered, in order to determine how changing length l1 affects the transmission
loss.

First, two different uniformly lined ducts are examined, having specific acoustic impedance Z1 or Z2.
Fig. 15 shows how DPWL varies with liner length l, for l ¼ 0 to 4m. Results are shown for liner lengths up to
l ¼ 4m, in order to examine the value of DPWL for large l. Also plotted are DPWL n¼1 and DPWL n¼2.

Consider the thin cavity lining with impedance Z ¼ Z1. In Fig. 15(a), for l40:5m, DPWL � DPWL n¼2. Mode
ðB; 2Þ is the least attenuated mode. However, for lo0:5m a better estimate of DPWL is given by DPWL n¼1. Mode
ðB; 1Þ is not the least attenuated mode, but owing to the similarity of the mode shapes in the rigid and lined
duct, a significant proportion of the acoustic energy is scattered into this mode. Accordingly, for short lengths
of this lining the rate of attenuation is greater than the decay rate of the least attenuated mode.

Now consider the thicker cavity lining with impedance Z ¼ Z2. In Fig. 15(b), in general, DPWL � DPWL n¼1

for all l. The attenuation is determined by the least attenuated mode, which is mode ðB; 1Þ in this case.
Now compare the two linings. For short liner lengths, the transmission loss predicted with the thin lining is

higher. This suggests that a short length of the thin lining could be beneficial, but the length of this lining is
crucial.

Now several different two-section axially segmented liners are examined. Each of the liners has a different
fixed length of thin lining (l1). In Fig. 16(a)–(d), DPWL is plotted for four different axially segmented liners with
l1 ¼ 0:1, 0.2, 0.3 and 0:4m, respectively. In each case, the plots show how DPWL varies with liner length l2, for
l2 ¼ 024m. Also plotted are DPWL n¼1 and DPWL n¼2.

In Fig. 16(a,c,d), it can be seen that Eq. (33) provides a good estimate of DPWL for an axially segmented liner
when l1 ¼ 0:1; 0:2 and 0:4m. Compare Eqs. (21) and (33). This leads to

DPWL � �20 log10jA
IIIþ
B;1 j þ C1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DPWL1

�20 Im bx
þ
B;1

n o
l2 log10 e|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DPWL2

, (39)
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Fig. 15. Examples of the predicted sound power transmission loss at blade passing frequency for two different uniform liners. The

variation of DPWL with liner length is shown, (for l ¼ 024m). Specific acoustic impedance of the lining is: (a) Z ¼ Z1 ¼ 3� 6:4i.
(Impedance of axially segmented liner—segment 1.) (b) Z ¼ Z2 ¼ 3� 0:5i. (Impedance of uniform liner, and axially segmented liner—

segment 2.) Key: —, DPWL; - - -, DPWL n¼1;2.
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i.e.

DPWLðl2Þ � DPWL1
� 20 Imfbx

þ
B;1gl2 log10 e. (40)

The attenuation in the second lined duct segment is determined by the decay rate Imfbx
þ
B;1g of the least

attenuated mode.
Now examine Fig. 16(b) when l1 ¼ 0:2m. For l240:3m, DPWL � DPWL n¼1. However, for l2o0:3m a better

estimate of DPWL is given by DPWL n¼2. In this case, the attenuation in the second lined duct segment is
determined by the decay rate Imfbx

þ
B;2g, which is not the least attenuated mode. Consequently, the attenuation

due to the second lined duct section is increased when l1 ¼ 0:2m.
The optimum length of the thin lining can be deduced. In Section 4, Fig. 6 shows how DPWL varies with l1,

when l ¼ 0:8m (fixed). Compare Fig. 6 with Fig. 17, which shows how jAIIþj and jAIIIþj, for modes ðB; 1Þ and
ðB; 2Þ, vary with l1. In Fig. 17, the values of jAIIþj and jAIIIþj have been calculated by using mode-matching,
and also approximately using Eqs. (29)–(32). Note the close agreement between the mode-matching results
and the estimated values of the modal amplitudes.

For modes ðB; 1Þ and ðB; 2Þ, jAIIþj is approximately constant, so the modal amplitudes in the first lined duct
segment are independent of its length. The modal amplitude jAIIþ

B;1 j4jA
IIþ
B;2 j, so there is a significant proportion

of the energy scattered into the first radial mode, although this is not the least attenuated mode in the first
lined duct section.

The values of jAIIIþ
B;1 j and jA

IIIþ
B;2 j depend on scattering between the first and second lined duct segments. The

optimum length of the scatterer (first lined duct section) is the value of l1 which minimizes the acoustic energy
scattered into the least attenuated mode in the second lined duct section. This is equivalent to minimizing
jAIIIþ

B;1 j, which can be deduced from Eq. (31). In Fig. 17(b) it is seen that jAIIIþ
B;1 j is minimized when l1 is about

0:23m. This is the same length as the optimum value of l1, seen in Fig. 6, which maximizes DPWL.
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Fig. 16. Examples of the predicted sound power transmission loss at blade passing frequency for four different axial liners. The variation

of DPWL with length l2 is shown, (for l2 ¼ 024m). Specific acoustic impedance of the linings is Z1 ¼ 3� 6:4i and Z2 ¼ 3� 0:5i. In each

case, length l1 is fixed: (a) l1 ¼ 0:1m; (b) l1 ¼ 0:2m; (c) l1 ¼ 0:3m; (d) l1 ¼ 0:4m. Key: —, DPWL; - - -, DPWL n¼1;2.
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7. Conclusions

The aim of the type of axially segmented liner proposed in this article is to increase the attenuation of fan
tones at high engine powers. In this article, the liner’s design has been optimized based on a single mode—
rotor-alone EO mode ðB; 1Þ—which is used to model the BPF tone at high supersonic fan speeds. In practice,
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Fig. 17. Predicted values of the modal amplitudes, (jAIIþj and jAIIIþj), with the axially segmented liner. Modes ðB; nÞ, n ¼ 1 and 2, at blade

passing frequency, are shown. Specific acoustic impedance of the linings is Z1 ¼ 3� 6:4i and Z2 ¼ 3� 0:5i: (a) variation of jAIIþj with

length l1; (b) variation of jAIIIþj with length l1. In each case l is fixed, l1 ¼ 020:8m, and l2 ¼ l � l1. Amplitudes of radial mode orders

n ¼ 1 and 2 are shown. The optimum length of liner l1, which minimizes AIIIþ
B;1 , is shown by the vertical arrow. Key: —, DPWL; - - -,

DPWL n¼1;2.
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the design of any inlet duct liner will be based on the attenuation of various tonal and broadband noise
sources, at different fan speeds. Fig. 18 shows the predicted sound power transmission loss for rotor-alone EO
modes ðm; 1Þ for m ¼ 1 to 4B, i.e. frequencies up to 4� BPF. Predictions for the axially segmented and
uniform liner designs are shown. Compare the predicted values of DPWL with the two types of liner. Although
this axially segmented liner design has been only optimized at BPF, for the frequency range 17oEOo70, the
predicted transmission loss is higher with the axially segmented liner. This suggests that it may be possible to
design a more practical type of axially segmented liner, by finding the optimal design based on a range of
frequencies.

At subsonic fan speeds the rotor-alone modes are cut-off, and at low supersonic fan speeds the rotor-alone
modes are near cut-off. An axially segmented liner is unlikely to be of benefit at these fan speeds because less
radial modes are cut-on; also, at these lower engine powers the modes are more easily attenuated anyway.

In this article sound power transmission losses have been calculated based on a source consisting of a single
mode. A recent paper by Zlavog and Eversman [21] demonstrates that if the source consists of two or more
radial modes of similar amplitude, then the transmission loss will depend on the relative phasing of these
modes. It has been assumed that the energy in the rotor-alone source (at the fan plane) is confined to the first
radial mode order. It is likely that higher radial mode orders generated at the fan plane will have lower
amplitudes than the first radial mode, but a source consisting of more than one mode could be prescribed to
examine how this would affect the predicted transmission loss with an axially segmented liner.

In the problem examined in this article only two radial modes are cut-on at BPF. The two-section axially
segmented liner is designed to scatter energy from radial mode order n ¼ 1 to n ¼ 2. If more than two modes
are cut-on, then more than two lined segments may be required to scatter energy into the higher radial mode
orders. However, with more lined duct sections this could also cause energy to be scattered back into low
radial mode orders.

Planned future work includes a more complex axially segmented liner optimization study which will include
the use of a multi-mode source, and search over a prescribed frequency range. A preliminary attempt at such
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an approach is reported in Ref. [19]. Also, the concept of a two-section axially segmented liner will be extended
to a multi-section axially segmented liner. The aim is to analyse a single-mode, single-frequency source, to
examine whether the optimum number of lined duct sections should equal the number of cut-on radial mode
orders.

A passive axially segmented liner would be relatively straightforward to manufacture and install in a
turbofan inlet duct. Alternatively, perhaps the best way to make use of this concept would be to have an
adaptive scattering liner, although this technology has not yet been demonstrated for use in a real turbofan
inlet duct.
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Appendix A. Transfer matrices T1, T2 and T3

T1, T2 and T3 are (2N � 2N) square matrices:

(41)

(42)
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(43)

where a; b�; c�; d�; e�; f � are each (N�N) square matrices. Element ði; jÞ of a; b�; c�; d�; e�; f � are,

aij ¼

Z b

r¼0

rJmðkm;irÞ Jmðkm;jrÞdr, (44)

b�ij ¼
kx
�
m;jaij

r0c0ðk � kx
�
m;jMxÞ

, (45)

c�ij ¼

Z b

r¼0

rJmðkm;irÞJmðm�m;jrÞdr, (46)

d�ij ¼
ax
�
m;jc
�
ij

r0c0ðk � ax
�
m;j MxÞ

, (47)

e�ij ¼

Z b

r¼0

rJmðkm;irÞJmðZ�m;jrÞdr, (48)

f �ij ¼
bx
�
m;je
�
ij

r0c0ðk � bx
�
m;jMxÞ

. (49)

The integrals in Eqs. (44), (46), and (48) can be evaluated analytically:

Z b

r¼0

rJmðkm;irÞJmðkm;jrÞdr ¼

b2

2
1�

m

km;ib

� �2
" #

J2
mðkm;ibÞ; i ¼ j;

0; iaj;

8>><
>>: (50)

Z b

r¼0

rJmðkm;irÞJmðm�m;jrÞdr

¼
b

k2m;i � m�2m;j

km;iJmþ1ðkm;ibÞJmðm�m;jbÞ � m�m;jJmðkm;ibÞJmþ1ðm�m;jbÞ
h i

, ð51Þ

Z b

r¼0

rJmðkm;irÞJmðZ�m;jrÞdr

¼
b

k2m;i � Z�2m;j

km;iJmþ1ðkm;ibÞJmðZ�m;jbÞ � Z�m;jJmðkm;ibÞJmþ1ðZ�m;jbÞ
h i

. ð52Þ
Appendix B. Diagonal matrices D1, D2 and D3

D1, D2 and D3 are (2N�2N) diagonal matrices:

D1
ii ¼

e�ikx
þ
m;id ; i ¼ 1 :: N

eiax
�
m;i l1 ; i ¼ N þ 1 :: 2N

)
(53)
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D2
ii ¼

e�iax
þ
m;i l1 ; i ¼ 1 :: N

eibx
�
m;i l2 ; i ¼ N þ 1 :: 2N

)
(54)

D3
ii ¼

e�ibx
þ
m;i l2 ; i ¼ 1 :: N

eikx
�
m;id ; i ¼ N þ 1 :: 2N

)
(55)

Appendix C. Calculation of modes in an acoustically lined circular-section duct

A modal solution of the convected Helmholtz equation (1) will be of the form

p̂m;nðr; y;xÞ ¼ Am;nJmðkm;nrÞ eiðmy�kxm;nxÞ. (56)

The boundary condition for a circular-section duct of radius b with a locally reacting wall with (non-
dimensional) specific acoustic impedance Z is

qp̂

qr
¼ �

ik

Z
1�

iMx

k

q
qx

� �2

p̂ at r ¼ b. (57)

Combine Eqs. (56) and (57) to form the eigenvalue problem:

km;nb
J 0mðkm;nbÞ

Jmðkm;nbÞ
¼ �i

kb

Z
1�Mx

kx

k

� �2

. (58)

In a rigid duct, the values of k are found by solving

J 0mðkm;nbÞ ¼ 0. (59)

A tracking method, proposed by Eversman [1], is used to find the values of km;n in a lined duct. These are
found by starting from the values in a rigid duct, and tracking the values of the k’s in the complex plane as
the acoustic admittance is varied from zero (rigid wall) to 1=Z (lined wall, impedance Z). The tracking
is performed using an initial value problem formulation, and the eigenvalues are refined using the
Newton–Raphson method.
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